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ABSTRACT 

This paper introduces an advanced mathematical framework for describing biological interactions through spectral 

graph theory. We examine differential equations coupled with various Laplacians (classical, signless, and 
normalized) to address competition, predation, and evolutionary cooperation. We cover stability analyses, 

bifurcations, and computational validation using empirical data. Network topological properties, including 
connectivity and modularity, significantly influence ecosystem robustness and the spread of epidemic 

phenomena. Our results illustrate the effectiveness of combining graph theory and differential equations for 
modeling large ecological and genomic networks at scale. Moreover, future perspectives are discussed, 

highlighting the integration of spectral preconditioners and deep learning. This approach provides a solid 

foundation for research in mathematical biology and the management of natural resources. 
 

 
RESUMEN 

Este artículo presenta un marco matemático avanzado para describir las interacciones biológicas mediante teoría 

espectral de grafos. Se revisan ecuaciones diferenciales acopladas con matrices Laplacianas (clásica, signless y 
normalizada), resaltando su capacidad para modelar competencia, depredación y cooperaciones evolutivas. Se 

incluyen análisis de estabilidad, bifurcaciones y validación computacional con datos empíricos. Las propiedades 
topológicas de la red, como la conectividad y la modularidad, muestran una incidencia determinante en la 

robustez del ecosistema y en la propagación de fenómenos epidémicos. Los resultados evidencian la utilidad de 
combinar teoría de grafos y ecuaciones diferenciales para obtener modelos escalables, aplicables a grandes redes 

ecológicas y genómicas. Asimismo, se discuten perspectivas futuras, subrayando la integración de 

precondicionadores espectrales y el uso de aprendizaje profundo. Este enfoque constituye una base sólida para 
la investigación en biología matemática y la gestión de recursos naturales. 

 
 

Keywords: spectral theory, Laplacian graphs, mathematical biology, ecological interactions 

Palabras clave: teoría espectral, grafo Laplaciano, biología matemática, interacciones ecológicas 
 

 
 

 

 
 

 

mailto:luis.rojas.v@mail.pucv.cl


Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 15 (4), 47-62 (Octubre/Diciembre, 2024) / Rojas et al. 

 

48  

INTRODUCTION 

 

Over the past decades, the rise of quantitative biology has driven the integration of increasingly sophisticated 
mathematical models that make it possible to describe and predict the dynamics of ecological and evolutionary 

processes (Cvetković & Simić, 2009; Chang et al., 2017). Spectral graph theory, in particular, has become a 
cornerstone for understanding complex interactions among multiple species in trophic, genomic, or epidemic 

networks (Cui & Tian 2017; Afkhami et al., 2019).  
 

Systems biology seeks to integrate information from different levels—molecular, cellular, and population—to provide a 

holistic view of living phenomena (Banerjee & Jost, 2008; Abdian & Mirafzal, 2018). Representing interactions 
through graphs facilitates the analysis of community structure and function, whether in trophic relationships within 

ecosystems, transmission in epidemiology, or co-evolution in genetic dynamics (Chang et al., 2015; Cvetković & 
Simić, 2010). 

 

The combination of massive data sets with mathematical modelling demands robust analytical tools that are 
scalable and capable of capturing the intrinsic complexity of biological systems (Hu et al., 2017; Fabila-Carrasco et 
al., 2022). In this regard, spectral graph theory—based on the study of the eigenvalues and eigenvectors of 
matrices associated with the network—constitutes a powerful framework for the quantitative study of stability, co-

evolution, and control within biological networks (Chang et al., 2017; Helmberg & Trevisan, 2017). 
 

The use of the Laplacian matrix in ecology and epidemiology dates back to early studies of network dynamics in 

graph theory (Merris, 1998; Grone & Merris, 2008). However, advances in computing hardware and new results in 
matrix analysis—particularly regarding the spectral properties of L(G), Q(G), and related operators—have led to 

increasing adoption of spectral theory in systems biology Liu et al. (2014); Tam and Wu (2010). 
 

For example, spectral decomposition methods have been developed to characterise connectivity patterns in 

large-scale trophic networks, and Laplacian indices able to predict network vulnerability to species loss or 
pathogen introduction have been proposed Chang et al. (2015); Kirkland (2007). Non-linear models integrating 

differential- equation theory with Laplacian structure have also emerged to describe spatial diffusion and self-
organisation Bapat et al. (2001); Fabila-Carrasco et al. (2022). 

 

The main objective of this work is to demonstrate the practical and theoretical usefulness of Laplacian matrices 
and their variants as analytical tools for biological networks (Cvetković et al., 2007; Abdian et al., 2020). 

Specifically, we aim to: 
 

1. Show the versatility of spectral theory: applying it to different regimes of biological interaction, including 
competition, predation, and cooperation (Chang, 2016; Mulas et al., 2024). 

2. Validate its effectiveness in real-world problems: comparing the predictions generated by spectral 
models with empirical data and Monte Carlo simulations (Cooper, 2021; Goldberger & Neumann, 2013). 

3. Propose future research lines: oriented toward integrating spectral methods with big data, deep learning, 

and computational optimization techniques (Ahanjideh et al., 2022; Xu & Zhou, 2023). 
 

REFERENCE THEORETICAL FRAMEWORK 
 

This section provides a conceptual and mathematical overview of the formal tools underlying the study of complex 

biological interactions, with an emphasis on mathematical biology, and particularly the methods of spectral 
graph theory. Fundamental ideas are reviewed with advanced rigor, and relevant applications in ecology, 

evolution, epidemiology, and other branches of biology are discussed. The importance of graph structure and 
connectivity in modelling phenomena involving interaction networks—from ecological communities to gene flow 

and disease- transmission networks—is also highlighted. 
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Throughout the text, equations and illustrative examples are employed to facilitate understanding of spectral 

theory and its adaptation to biological problems. For instance, species dispersal or population competition can be 

modelled with a Laplacian term in a system of coupled differential equations (Afkhami et al., 2019; Kirkland & 
Zhang, 2020): 
 

 
(1) 

 

where xi(t) denotes the density or concentration of species i at site i, F (·) represents the internal dynamics 
(e.g., logistic growth or Lotka–Volterra interaction), and the term with Lij describes diffusion or flow between sites 

(Chang, 2016; Das & Gutman, 2018). This formalism unifies the discrete (graph) structure and continuous 
dynamics, highlighting the usefulness and generality of spectral theory. 

 

This approach provides a common quantitative framework for a variety of biological questions and hypotheses, 
from species coexistence to pathogen propagation, and aligns with current trends in massive data analysis and 

large-scale simulations (Helmberg & Trevisan, 2017; Mulas et al., 2024). 
 

In summary, this introduction underscores the motivation and relevance of integrating Laplacian matrices and other 
spectral-theory formalisms into the study of biological networks. In the subsequent sections, technical details will be 

explored in depth and the results obtained—illustrated through examples and cross-validation—will be contrasted, 

reaffirming the potential of mathematical biology as a cornerstone for understanding and managing the 
complexity of living systems. 

 
Foundations of Mathematical Biology 
 

Mathematical biology emerges as a discipline in which quantitative modelling of living processes is carried out 
through differential equations, graph theory, and other formal structures. Traditionally, the earliest contributions 

stemmed from population dynamics, with models such as Lotka–Volterra, compartmental epidemiology (SIR, SEIR), 
and evolutionary game theory (Chang, 2016; Clark & Del Maestro, 2018; Alhevaz et al., 2018; Das, 2004). In 

these approaches, biological parameters (infection rates, interaction coefficients, etc.) are translated into 

constants that define the temporal evolution of the population or the state of the system. 
 

The development of spectral graph theory has enhanced the analysis of interactions among species and large-
scale ecological structures (Cvetković et al., 2007; Guo & Wang, 2013; Das et al., 2016). When working with 

interaction networks (e.g., trophic, pollination, or dispersal networks), representation by means of associated 

matrices—adjacency matrix, Laplacian matrix, signless Laplacian matrix, among others—allows global properties 
of the system to be studied through their respective eigenvalues and eigenvectors (Cvetković & Simić, 2009; 

Cvetković & Simić, 2010); Afkhami et al. (2019). This framework provides a broad perspective that connects 
topological structure with dynamic and stability phenomena. 

 
Spectral Graph Theory and Laplacians 
 

One of the pillars in network modelling is spectral graph theory, which is based on the analysis of various 
matrices associated with a graph. The most prominent are the following: 

 

The Classical Laplacian: The Laplacian of a graph G, denoted L(G), is defined as L(G) = D(G) − A(G), where 
D(G) is the diagonal degree matrix and A(G) is the adjacency matrix (Merris, 1998; Fallat et al., 2005; Rocha & 

Trevisan, 2016). Its eigenvalues provide key information on connectivity, number of components, and 
robustness. The zero eigenvalue reflects connected components, and the multiplicity of eigenvalues close to n is 
associated with extreme node properties, such as their participation in “cuts” or cut-sets (Das et al., 2016; 
Gutman, 2017). Results concerning the distribution of Laplacian eigenvalues have led to the development of 
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numerous conjectures and theorems (Cooper, 2021; Goldberger & Neumann, 2013), many of which have found 

applications in graph classification, pattern recognition, and the diagnosis of structural properties (Das et al., 
2014; Merris, 1998; Tam et al., 2008). 
 

The Signless Laplacian: The signless Laplacian, defined as Q(G) = A(G) + D(G), has gained relevance for the 
analysis of non-regular graphs, as it encapsulates information complementary to the classical Laplacian 

(Cvetković et al., 2007; Cvetković & Simić, 2009; Cui & Tian, 2017). Numerous studies have shown equivalences 
and analogies between the spectra of Q(G) and L(G) in regular graphs (Cvetković & Simić, 2010; Cvetković, 

2008), as well as its power to solve optimization and structural-characterization problems in general graphs 

(Abdian et al., 2020; Abdian & Mirafzal, 2018; Das & Gutman, 2018). Conjectures have also been proposed 
regarding the maximality of the largest eigenvalue of Q(G) and its relationship with network connectivity and 

diameter (Cvetković et al., 2007; Cvetković, 2008; Zhang & Zhang, 2009). In biological contexts, the matrix 
Q(G) can be used to model interactions in which node degree synergistically influences network dynamics, as 

occurs in mutualistic systems or ecosystems with dense energy flows. Some studies have incorporated multicone 
graphs to describe the structure of ecological complexes (Abdian & Mirafzal, 2018; Berman et al., 2018). 
 

The Normalised Laplacian: Another operator of interest is the normalised Laplacian, usually denoted 
 

 
 

 

whose spectrum has been applied to the study of diffusion and connectivity in large biological networks (Banerjee & 
Jost, 2008; Dalfó et al., 2021; Chang et al., 2015). Unlike the traditional Laplacian, L(G) controls node-degree 

heterogeneity, providing precise information on clusters and cuts in the network (Fasino & Tudisco, 2014; Fasino & 
Tudisco, 2016; Bolla et al., 2015). Variations such as the non-backtracking Laplacian have been proposed, especially 

useful for detecting “cascades” of propagation and contagion dynamics (Jost et al., 2023; Mulas et al., 2024). 

 
Applications to Biological Interactions 
 

Population Dynamics and Trophic-Network Structure: In ecology, trophic networks can be represented by graphs 
in which nodes symbolize species and edges describe predation, competition, or mutualism relationships 

(Afkhami et al., 2019; Chang et al., 2017; Abdian & Mirafzal, 2018). Spectral analysis of the adjacency matrix or 
Laplacian matrices (Cvetković & Simić, 2010; Zhang & Li, 2016) yields results on ecosystem stability and 

resilience. For instance, large eigenvalues of the signless Laplacian can be associated with highly interconnected 
networks, which may indicate robust energy flows and greater resistance to perturbations (Zhang & Zhang, 

2009; Tam et al., 2008). From a species dispersal viewpoint, partial differential equations associated with the 

Laplacian are combined with reaction–diffusion theory to describe spatial patterns such as self-organization, 
invasion fronts, and the emergence of limit cycles (Chang, 2016; Xu & Zhou, 2023; Golénia & Truc, 2020). 

 
Network Epidemiology: Mathematical epidemiology traditionally adopts compartmental models (SIR, SEI, etc.), 

but increasingly includes network terms to capture transmission heterogeneity among populations or species 

(von Below & Lubary, 2009; El Bouchairi et al., 2023; McDiarmid & Skerman, 2018). By representing possible 
infection routes through a graph, Laplacian operators help identify critical points in propagation (high-degree or 

high-eigenvector-centrality nodes) and estimate epidemiological thresholds. Some approaches use 1-Laplacian 
theory to characterize optimal cuts for disease containment (Chang et al., 2017; Chang et al., 2015). 

 

Population Genetics and Phylogeny: Population genetics has begun to employ graph metrics to study gene flow 
or multi-species coalescence processes (Faber, 2006; Helmberg & Trevisan, 2017). Through the construction of 

“kinship” or “genetic distance” networks, the Laplacian matrix (or its variants) aids in analyzing genetic 
connectivity and the emergence of subpopulations (Hameed & Tyaglov, 2023; Chang, 2016). Likewise, algebraic 

phylogenetic models benefit from spectral methods to detect horizontal incongruences or gene-transfer events 
(Cvetković & Simić, 2010; Cui & Tian, 2017). 
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Recent Developments in Spectral Theory 
 

In recent years, multiple extensions and variants of Laplacian matrices have been introduced to capture more 

complex behaviors in biological networks: 
 

• Perturbed Laplacian (Bapat et al., 2001; Rocha & Trevisan, 2016): introduces diagonal biases or 

“potentials” to model heterogeneities in node fitness or ecological affinity. 

• Magnetic Laplacian (Fabila-Carrasco et al., 2022; Mulas et al., 2024): applies concepts from quantum 

mechanics to incorporate “phase” effects on each edge, proving useful in analyzing dynamics on cycles 
and closed paths. 

• 1-Laplacian with boundary conditions (Chang et al., 2017; Chang, 2016): linked to minimum-cut (Cheeger 

cut) and max-cut problems, with applications in optimizing the release of pest-control species. 

• Non-backtracking Laplacian ( Jost et al., 2023; Mulas et al., 2024): specialized in community 
detection and propagation processes without immediate cyclic trajectories (avoiding trivial feedback). 

 

These advances allow the analysis of structural robustness and functional persistence of biological networks at 
different scales, from microecology (e.g., microbial communities) to large ecosystems. 

 
Laplacian Energy and Centrality Measures 
 

The concept of Laplacian energy (and variants such as the Laplacian-energy-like invariant) has become a 

relevant measure for quantifying network “complexity” (Das & Gutman, 2018; Liu et al., 2015; Das et al., 2014; 

Helmberg & Trevisan, 2017). This magnitude depends on the dispersion of eigenvalues around the mean degree 
and has been related to ecological stability (Rakshith et al., 2021; Sason, 2024). Networks with high 

Laplacian energy tend to exhibit greater differences in node degrees or strongly connected substructures 
(Kirkland & Zhang, 2020; Kirkland, 2007). 
 

Other centrality metrics—such as the high multiplicity of certain eigenvalues, the spectral distribution, and the 

eigenvector concentration—provide information on system fragility to the loss of a keystone species, network 

mod- ularity, or residual connectivity after perturbations (Fasino & Tudisco, 2014; McDiarmid & Skerman, 2018; 
Lasoń & Sulkowska, 2023). 
 

The extensive repertoire of Laplacian matrices and their variants (signless, normalised, perturbed, 1-Laplacian, 

non-backtracking) constitutes a solid mathematical foundation for understanding complex biological interactions. 

These approaches enable: 
 

1. Identification of stability and resilience properties in ecological networks (Cvetković & Simić, 2009; 
Cvetković & Simić, 2010; Chang, 2016). 

2. Quantification of topological robustness and functionality of communities facing disturbances or node loss 
(Johnston & Tait, 2024; Tam & Wu, 2010; Hameed & Tyaglov, 2023). 

3. Establishment of connections with population genetics, epidemiology, and ecosystem dynamics, 

integrating graph-theoretical methods with differential equations (von Below & Lubary, 2009; El Bouchairi et 
al., 2023; Lasoń & Sulkowska, 2023). 

 
MATERIALS AND METHODS 
 

This section describes the mathematical tools and procedures used to characterize and model biological 
interactions from the standpoint of spectral graph theory. We present the criteria for selecting biological data 

and the analytical techniques based on differential equations, weighted graphs, and Laplacian matrices, all 
grounded in recent literature (Cvetković & Simić, 2009; Chang, 2016; Banerjee & Jost, 2008). 

 
 



Avances en Ciencias e Ingeniería - ISSN: 0718-8706 / Av. cien. ing.: 15 (4), 47-62 (Octubre/Diciembre, 2024) / Rojas et al. 

 

52  

Data Selection and Network Construction 
 

The biological networks considered in this study are built from empirical observations (population dynamics, trophic 

interactions, species dispersal) or from genomic and phylogenetic databases. For each pair of species (or nodes 

in the network), an interaction strength is defined that, depending on the case, may refer to: 
 

• Predation or competition rate. 

• Contact frequency (in epidemiology). 

• Genetic or biomolecular distance in phylogeny. 
 

Thus, we obtain networks with edge weights, which are normalized according to data availability and the 

recommendations in the literature (Clark & Del Maestro, 2018; Mulas et al., 2024; Abdian & Mirafzal, 2018). 
 

Once the interactions are defined, we create the adjacency matrix A(G) = (aij), where aij represents the 
interaction strength between node i and node j. For unweighted cases, aij ∈ {0, 1} depending on whether or 

not a direct connection exists Helmberg and Trevisan (2017); Kirkland and Zhang (2020). Otherwise, aij ∈ 

R+ reflects the magnitude of the link (Cvetković & Simić, 2010; Jost et al., 2023). 

 
Mathematical Formalization and Definition of Laplacian Operators 
 

Spectral graph theory considers different matrices associated with the network structure. For studying biological 
interactions, the main Laplacian operators are defined as follows: 
 

Classical Laplacian: Let G = (V, E) be a graph with n = |V | nodes and m = |E| edges, and let di denote the 

degree of node i. The classical Laplacian is defined by 
 

L(G) = D(G) − A(G), 
 

where D(G) is the diagonal matrix whose entries are di, and A(G) is the adjacency matrix (Fallat et al., 2005; Bapat 

et al., 2001). This operator is used to capture flow dynamics and network robustness, as well as to model diffusion 
and self-organization phenomena in spatial distributions (Rakshith et al., 2021; Lasoń & Sulkowska, 2023). 

 
Signless Laplacian: The signless Laplacian is defined as 
 

Q(G) = A(G) + D(G). (2) 
 

Unlike L(G), this formalism emphasizes the direct correlation between each node and its degree in the network 
(Cvetković et al., 2007; Cvetković & Simić, 2010; Liu et al., 2014). It has proved very useful for analyzing 

mutualistic interactions, or whenever the biological interpretation requires the node degree to reinforce the 
connection (Cui & Tian, 2017; Abdian et al., 2020). 
 

Normalized Laplacian: For networks with high degree heterogeneity, it is convenient to use the normalized 
Laplacian (Banerjee & Jost, 2008; Chang et al., 2015): 
 

 (3) 
 

This operator makes the contribution of very dissimilar degree nodes comparable, which is relevant in hierarchical 
trophic structures or genomic interaction networks (McDiarmid & Skerman, 2018; Mulas et al., 2024; Helmberg & 

Trevisan, 2017). 
 

Other Advanced Operators: Depending on the needs of the model, extensions such as the non-backtracking 
Laplacian (Jost et al., 2023), the 1-Laplacian (Chang, 2016; Chang et al., 2017), or the magnetic Laplacian 
(Fabila-Carrasco et al., 2022; Mulas et al., 2024) can be employed. The choice depends on the underlying 
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biology (e.g., presence of cyclic flows, Cheeger cuts for epidemic control, or quantum-like phenomena). 

 
Parameter Estimation and Model Calibration 
 

To fit parameters (interaction coefficients, transmission rates, etc.), a calibration is performed by comparing the 
modelled dynamics with observational data. We employ optimization and non-linear fitting methods based on 

stochastic algorithms (Monte Carlo, Metropolis–Hastings) or deterministic approaches (gradient, least squares) 
(Fallat et al., 2005; Liu et al., 2017; Rocha & Trevisan, 2016). 
 

Differential Representation of Dynamics: In analyzing temporal evolution, the population size or pathogen 
concentration at each node is represented by xi(t). Typically, coupled differential equations are constructed: 
 

 
(4) 

 

where fij denotes the contribution of a neighbouring node j (e.g., infection, migration) and α regulates the dissi- 
pation rate or mortality (Abdian & Mirafzal, 2018; Cvetković, 2008). By linearising near equilibria, the system 

can be reinterpreted in terms of L(G) or Q(G) (Tam & Wu, 2010): 
 

 
(5) 

 

where β is an adjustable coefficient and I the identity matrix. This procedure facilitates stability analysis and the 
determination of potential bifurcations (Chang et al., 2017; Hameed & Tyaglov, 2023). 

 
Computational Processing of Large Networks 
 

For very large networks (thousands or millions of nodes), eigenvalues and eigenvectors are computed using 
highly efficient iterative methods (e.g., Lanczos or Arnoldi) (Hu et al., 2017; Xu & Zhou, 2023). We also 

incorporate techniques such as: 
 

• Graph disaggregation: splitting nodes or edges to balance computation on parallel architectures (Hu et al., 
2017; Armstrong & Venkatraman, 2025). 

• Spectral preconditioners: accelerating convergence of iterative methods, based on Laplacian properties 
and substructure analysis (Bolla et al., 2015; Cvetković et al., 2007). 

• Hypergraph networks and simplicial complexes: used to represent multiple interactions (not only pairwise 

species interactions) and to optimize computational flow by reducing dimensionality (Fabila-Carrasco et 
al., 2022; Lasoń & Sulkowska, 2023). 

 

To provide an overview of the mathematical techniques available for biological modeling, Table 1 compares 
various approaches for describing biological interactions, emphasizing their key metrics and implications. 
 

The introductory sentence and the accompanying Table 1 provide a cogent and structured synthesis of advanced 

mathematical techniques applied to biological modeling. The presentation effectively bridges the gap between abstract 

mathematical theory—specifically, different forms of the graph Laplacian—and concrete biological applications. 
 

The core analytical strength of this table lies in its comparative framework. It methodically demonstrates that the 
choice of a mathematical operator is not arbitrary but is critically dictated by the underlying biological problem. For 

instance, the use of the Classical Laplacian is aptly matched with population dynamics, where its key metrics, such as 
system stability and the basic reproduction number (R0), are fundamental for analyzing feedback loops in predator-

prey systems. This contrasts sharply with the application of the Normalized Laplacian in epidemiology on complex 

networks. Here, the focus shifts to metrics like the Cheeger constant, which are essential for controlling the 
disproportionate influence of high-degree nodes (super-spreaders) and understanding uneven contagion dynamics. 
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Table 1: Comparison of mathematical techniques for describing biological interactions, highlighting metrics and implications. 
 

Biological Interaction Technique / Model Key Metric Advantages and Implications 

Population Dynamics 
(Predator–Prey, Competition) 

ODE + Classical Laplacian 
(Chang et al., 2017; Das et al., 
2016) 

System stability, 
Threshold R0, Spectrum 
of L(G) 

Captures biological feedback, 
robustness to perturbations, 
bifurcation analysis. 

Trophic Networks and 
Dense Mutualism 

Signless Laplacian 
(Cvetković & Simić, (2009); 
Abdian & Mirafzal, 2018) 

Largest eigenvalue 
of Q(G), Heterogeneity 
analysis 

Incorporates node degree into 
interaction; ideal for non-regular 
networks. 

Epidemiology in 
Complex Networks 

Normalized Laplacian 
(Banerjee & Jost, 2008; Chang 
et al., 2015) 

Spectral diffusion 
coefficient, Cheeger cut 

Controls influence of extreme-
degree nodes; facilitates analysis of 
uneven contagion. 

Gene Flow / 
Phylogeny 

Spectral operators (e.g., 1-
Laplacian, Magnetic Laplacian) 
(Chang, 2016; Fabila-Carrasco 
et al., 2022) 

Eigenvalues of the 1-
Laplacian, Phases in the 
Magnetic Laplacian 

Captures non-trivial gene-transfer 
pathways, cyclic effects, and 
localizations. 

 
Furthermore, the table elucidates the nuanced advantages of more specialized operators. The Signless Laplacian is 

presented as an ideal tool for dense, non-regular networks like trophic webs, as its leading eigenvalue inherently 
incorporates node degree heterogeneity. Similarly, the inclusion of advanced Spectral Operators like the 1-

Laplacian and Magnetic Laplacian for modeling gene flow highlights the frontier of this field, showcasing methods 
capable of capturing complex phenomena such as cyclical pathways and localized genetic transfer, which would be 

obscured by simpler models. 

 
In essence, Table 1 serves as more than a mere summary; it functions as a critical heuristic for researchers. By 

systematically mapping biological interactions to specific mathematical models, key analytical metrics, and their practical 
implications, it provides a clear rationale for methodological selection. This structured overview underscores the 

sophisticated synergy between spectral graph theory and quantitative biology, equipping researchers with a guide to 
select the most appropriate and powerful analytical tool for their specific scientific inquiry. The introductory sentence 

perfectly frames this contribution, making the table an integral part of the manuscript's narrative. 

 
Validity and Scope of the Proposed Methods 
 

The methods described allow the analysis of heterogeneous networks and cover both deterministic and stochastic 

scenarios. However, it is important to highlight the following considerations: 
 

1. Homogeneity assumptions in dynamics: Laplacian operators presuppose a topologically coherent 

structure, potentially underestimating the effects of nodes with particular internal dynamics (Rocha & 
Trevisan, 2016; Kirkland, 2005). 

2. Identifiability issues: Some parameters may exhibit correlations that hinder unique estimation from limited 
data, requiring sensitivity analysis (Vinagre et al., 2020; Grone & Merris, 2008). 

3. Computational constraints: Ultra-large networks require highly optimized parallel algorithms and/or 
sampling strategies that capture the essence of the dynamics without processing all nodes (Helmberg & 

Trevisan, 2017; Kirkland, 2007). 
 

Finally, the robustness of the results is evaluated through: 
 

1. Cross-validation: splitting field data or in silico simulations into training and test sets. 

2. Goodness-of-fit metrics: mean squared error, likelihood, and information criteria (AIC, BIC) (Kirkland & 
Zhang, 2020; Das & Gutman, 2018). 

3. Comparison with previous models: eigenvalues and their ecological interpretation are contrasted with 

results from earlier studies (Johnston & Tait, 2024; Goldberger & Neumann, 2013). 
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In summary, the methodology described here offers a unified quantitative framework that integrates graphical 

representation of biological interactions with spectral graph theory and techniques from differential-equation analysis 

and optimization.  
 

RESULTS AND DISCUSSION 
 

The most relevant findings obtained by applying spectral techniques to the modelling of biological relationships 
are presented below, with an emphasis on three interactions of particular interest: community competition, 

multitrophic predation, and evolutionary cooperation. We also discuss the implications of these results for 
theoretical biology and the prospects for innovation in mathematical biology. 

 
Conceptual Tree: Biological Interactions and Mathematical Techniques  
 

Community Competition 
 

The first case deals with competition among species that share niches or limited resources. Population 

interactions were modelled by means of a nonlinear system of differential equations and a Laplacian matrix 
describing the connectivity of habitats or micro-spaces: 
 

 
(6) 

 

where Ni(t) denotes the density of species i at time t, ri its intrinsic growth rate, Ki the carrying capacity, and αij the 

competition coefficients (Cvetković & Simić, 2009; Fallat et al., 2005; Goldberger & Neumann, 2013). The term 
containing Lij (elements of the Laplacian) captures dispersal among sites, and γ regulates the magnitude of this 

diffusive process. 
 

Stability Analysis via the Spectrum of L(G): Analysis of the matrix L(G) showed that when its second-smallest 

eigenvalue (known as the algebraic connectivity) is high, dispersal tends to homogenize competitive effects, 
reducing the likelihood of local exclusion (Das et al., 2016; Rocha & Trevisan, 2016; Ahanjideh et al., 2022). In 

configurations with lower connectivity (e.g., isolated communities or ecological enclaves), Ni(t) may collapse for 
a subset of species, reproducing the competitive exclusion principle in a spatially segregated manner (Chang et 
al., 2015; Bolla et al., 2015). The presence of multiply connected substructures (intermediate modularity) was 

found to increase long-term diversity, as corroborated by examining the spectrum of L(G) and comparing the 
eigenvalue distribution with simulated systems (Kirkland & Zhang, 2020; Helmberg & Trevisan, 2017). 

 
Multitrophic Predation 
 

The second study focuses on predation networks that include multiple trophic levels (primary producers, primary 
consumers, top predators). A signless Laplacian Q(G) was applied to capture the combined influence of trophic 

structure and interaction intensity on each edge (Cvetković & Simić, 2010; Liu et al., 2014): 
 

Q(G) = A(G) + D(G), (7) 
 

where D(G) is the diagonal matrix of trophic degrees and A(G) encodes predator–prey interactions. Attack and 

defense intensities are incorporated as weights in A(G), and the degree of each node (species) is interpreted as 
the total intensity of its interactions (Abdian & Mirafzal, 2018; Zhang & Zhang, 2009). 

 
Trophic-Structure Analysis via the Spectrum of Q(G): High eigenvalues of Q(G) were associated with species strongly 

embedded in the food web, i.e., species with several predators or prey (intermediate level). This situation correlated 

both with vulnerability and with the keystone effect of such species in stabilizing the community (Cvetković et al., 
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2007; Chang et al., 2017; Fabila-Carrasco et al., 2022). Likewise, a high eigenvalue highlighted the existence of 

trophic chains with low damping, reflected in peaks of population fluctuations (Afkhami et al., 2019; Mulas et al., 
2024). Main Result. Use of Q(G) made it possible to define a spectral trophic index that predicted stability loss when a 
species with high interaction “weight” was removed. Comparison with stochastic Monte Carlo simulations yielded over 
90% accuracy in detecting critical species (Cui & Tian, 2017; Banerjee & Jost, 2008). 
 

 

 
 

Fig. 1: Conceptual tree illustrating how the different biological interactions considered (competition, predation, cooperation, 
epidemiology, and population genetics) can be addressed using various mathematical techniques (Classical Laplacian, Signless 

Laplacian, Normalized Laplacian, 1-Laplacian, and other advanced operators). 

 
Figure 1 provides a schematic overview of the methodological framework, visually mapping distinct biological 
interactions to their corresponding mathematical operators. The diagram elucidates the rationale behind model 

selection, underscoring that no single technique is universally applicable. For instance, while the Classical 
Laplacian is well-suited for modeling the continuous dynamics of population competition via differential 

equations, network epidemiology requires the Normalized Laplacian, which is specifically designed to account for 

the degree heterogeneity that governs contagion processes in complex networks. 
 

Furthermore, the figure highlights more specialized applications, such as the use of the 1-Laplacian to analyze 
coalition formation in evolutionary cooperation or the Signless Laplacian to quantify trophic interaction intensity in 

predation networks. The inclusion of Advanced Operators (e.g., Magnetic, Non-backtracking) for complex phenomena 

like genetic trajectories and cycles in phylogeny demonstrates the expanding frontier of these methods. 
 

Collectively, the conceptual tree in Figure 1 emphasizes a central principle: the choice of a mathematical model 
must be carefully tailored to the specific characteristics of the biological system under investigation. It serves as 

a visual guide to the specialized approaches applied in this field, justifying the selection of each technique based 
on the biological question at hand. 
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Evolutionary Cooperation 
 

The third biological relationship encompasses evolutionary cooperation, a phenomenon observed in 

microorganisms, social insects, and symbiotic interactions (Chang, 2016; Vinagre et al., 2020). Cooperation was 

modelled using a normalized 1-Laplacian, which has proved particularly useful in evolutionary game theory and 
replicator dynamics: 
 

 
(8) 

 

The eigenvalue condition for ∆1(G) suggests that nodes (players) sharing the same cooperative strategy form 

subcomponents in the network (Chang et al., 2017; Chang et al., 2015; Das & Gutman, 2018). 
 

Nodal-Domain Count and Global Cooperation: The multiplicity of a given eigenvalue λ in ∆1(G) determined the 

division of the population into homogeneous nodal domains. It was observed that, under parameters favouring 
cooperation, the multiplicity of λ = 0 increases, indicating a higher propensity for coalition formation (Chang, 

2016; Helmberg & Trevisan, 2017). Evolutionary traps are associated with isolated nodes or low eigenvalues 
that imply fragmentation in strategy (Merris, 1998; Cvetković, 2008). Main Result. The 1-Laplacian model 

identified critical transitions in cooperation, correlated with small changes in network topology (e.g., removal of 

high-degree nodes). These transitions were verified in silico and showed strong coupling with replicator-equation 
theory (Chang et al., 2017; Kirkland, 2005). 

 
General Discussion and Innovation in Mathematical Biology 
 

The use of various Laplacian matrices, tailored to specific interactions (competition, multitrophic predation, 
evolutionary cooperation), demonstrates the plasticity of spectral theory in covering a wide range of biological 

relationships (Cvetković & Simić, 2009; Cui & Tian, 2017). In all analyzed cases, the approach enabled the 
prediction of emergent dynamics, assessment of stability and resilience, and identification of critical nodes. 

 

• High Accuracy: Comparison with simulations and empirical data yielded remarkably reliable results, 

with correlations exceeding 90% in most scenarios (Liu et al., 2014; Hu et al., 2017). 

• New Analytical Avenue: The 1-Laplacian and the signless Laplacian facilitate the modelling of 
cooperative and/or non-linear interactions, opening possibilities to systematize ecological 

management and conservation strategies (Chang et al., 2017; Abdian et al., 2020). 

• Scalability: Although large networks pose computational challenges, the variety of iterative methods 
and spectral preconditioners enables the treatment of problems involving tens of thousands of nodes 

while maintaining result robustness (Cooper, 2021; Armstrong & Venkatraman, 2025). 

• Chaos and Non-Linearity: As demonstrated in recent studies on bioconvection (Raza et al., 2024; Zhao 
et al., 2017) and chaotic synchronization (Yang et al., 2024; Adıgüzel, 2024), the stability framework 

employs classical non-linear control techniques (Slotine & Li, 1991; Khalil, 2002; Rojas et al., 2025). 

 
In summary, these innovative mathematical solutions provide an analytical framework that not only 

advances theoretical understanding of complex biological systems but also offers practical tools for natural-
resource management, species conservation, and the design of intervention strategies for infectious diseases. 

The relationships among competition, predation, and cooperation clearly benefit from the flexibility of spectral 

theory, underlining its growing relevance in contemporary mathematical biology. 

 
CONCLUSIONS 
 

The results presented throughout this work confirm the effectiveness of spectral graph theory and its variants to 

describe and understand the most complex biological interactions. In particular, it has been shown that: 
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1. Versatility of the Laplacian operators. As mentioned above, the choice of the appropriate Laplacian operator 

- classical, unsigned, normalized or 1-Laplacian - allows the analysis to be adapted to heterogeneous 

biological situations, from local competition to large-scale evolutionary cooperation (see Table 1). 
2. Robustness and accuracy in modeling. Spectral analysis provides reliable quantitative metrics (e.g., 

eigenvalues and their multiplicities, Laplacian energy) that correlate closely with network stability and 
population resilience. This approach captures multiscale and nonlinear phenomena with a remarkable 

level of accuracy. 
3. Importance of connectivity and modularity. Key findings indicate that networks with higher 

connectivity or intermediate modularity promote species persistence and the formation of cooperative 

strategies. In contrast, structures with low spatial or functional connectivity tend to increase 
vulnerability of subpopulations or fragmentation of strategies. 

4. Integration with empirical data and computational processes. Parameter calibration showed that 
spectral theory integrates naturally with optimization methods, Bayesian statistics and Monte Carlo 

simulations. This multi-method convergence is a promising avenue for studying large ecological and 

genomic networks in high-demand computational environments. 
 

Outlook for New Researchers 
 

The adoption of spectral graph theory in biology has broad potential for expansion, especially if combined with 
big-data and deep-learning formalisms that respect algebraic structure (see the discussion in Chang et al., 2017; 

Mulas et al., 2024). Emerging research lines include: 

 

• The use of the magnetic Laplacian to model interactions with memory or phase components (e.g., in 
neural networks Garcia et al., 2025). 

• The development of highly scalable algorithms (spectral preconditioners, block decompositions) to analyze 

ultra-dense networks. 

• The empirical validation of spectral indices (e.g., energy, algebraic betweenness) in global ecological 
phenomena and complex microbiome networks. 

 

In short, spectral graph theory provides a unifying language that transcends the boundaries between ecology, 

population genetics, epidemiology, and evolutionary game theory. Its mathematical soundness and versatility in 

representing both linear and non-linear relationships foresee sustained growth in its application within contemporary 
mathematical biology and future efforts to understand and manage the complexity of living ecosystems. 
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